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A series of 3-halomethyl-5,6-dihydro-1,2-oxazine N-oxides (halogen = Cl, Br, I) is prepared from 4-phe-
nyl-3,6,6-trimethyl-5,6-dihydro-4H-oxazine N-oxide by means of a silylation/halogenation sequence.
The obtained halogenated N-oxides undergo reactions typical of cyclic six-membered nitronates includ-
ing 1,3-dipolar cycloaddition, addition of nucleophiles, and substitution of the halogen by C-, S-, and N-
nucleophiles.

� 2009 Elsevier Ltd. All rights reserved.
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Nitronates A constitute an interesting class of nitro derivatives,
and in recent years there has been a significant development of the
chemistry of these compounds1 (Scheme 1). Alkyl nitronates (A,
Y = Alk) undergo various transformations such as dipolar cycload-
dition,1,2 nucleophilic addition,3 reduction,4 and silylation reac-
tions,5 while silyl nitronates (A, Y = SiR3) have been employed in
a number of catalytic asymmetric processes.6 It was demonstrated
that cyclic alkyl nitronates can serve as key intermediates in the
synthesis of natural products,1c,2 medicinal substances,7 and vari-
ous functionalized molecules.8

Despite significant advances in the field of nitro group deriva-
tives, nitronates bearing a halogen atom have remained virtually
unexplored. Recently, we demonstrated that halo-substituted silyl
nitronates A1 exhibit specific properties, allowing for their applica-
tion in the synthesis of cyclic five-membered nitronates.9 Nitro-
nates A2 were proposed as short-lived intermediates in the
oxidative transformation of nitro alkanes into conjugated nitro al-
kenes, and their instability is associated with facile elimination of
halosilane (TMS-X).10 As for cyclic nitronates, compounds A3 are
known,11 while nitronates A4 have not been described.

Herein we report the synthesis of 3-halomethyl-substituted
cyclic six-membered nitronates (5,6-dihydro-1,2-oxazine N-oxi-
des, A4) by means of functionalization of the 3-methyl group of
nitronate 2, and provide preliminary results on the investigation
of their chemistry.

Nitronate 2 was readily obtained from isobutylene, benzalde-
hyde, and nitroethane5a (Scheme 2). Silylation of 2 with trimethyl-
ll rights reserved.
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silyl triflate afforded N-(silyloxy)enamine 3 in high yield, according
to a modified literature procedure.5

Given that enamines 3 exhibit nucleophilic reactivity towards
carbocationic electrophiles,5 we decided to study their behavior
with different halogenating reagents.12,13 The results are presented
in Table 1.

The reaction of enamine 3 with N-chloro- and N-bromosuccin-
imide proceeded cleanly to afford chloro- and bromonitronates
4a and b in almost quantitative yield after column chromatogra-
phy.14 Alternatively, we used elemental halogens in combination
with a source of acetate, which can trap the reactive halosilane
arising after halogenation of 3. Though tetrabutylammonium acte-
tate was successfully employed, the use of triethylamine together
with acetic acid was more convenient, since in this case, ammo-
nium by-products were removed upon work-up to furnish bromo-
and iodonitronates 4b and c in good purity. Fluorination using sev-
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Table 1
Halogenation of enamine 3

O
N

OTMS

Ph

O
N

O

Ph

X

43

CH2Cl2

halogenating
reagent

Entry X Conditionsa Product Yieldb (%)

1 Cl NCS, �78 �C?rt 4a 96
2 Br NBS, �78 �C?rt 4b 93
3 Br Br2, Bu4NOAc, �78 �C 4b 83
4 Br Br2, Et3N/AcOH, �94 �C?�30 �C 4b 90
5 I I2, Bu4NOAc, �78 �C?rt 4c 76
6 I I2, Et3N/AcOH, �94 �C?�30 �C 4c 81
7 I ICl, �78 �C?rt 4c 60

a After raising the temperature, the mixture was stirred for 10–30 min; see
Supplementary data for details.

b Isolated yield.
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eral reagents (Selectfluor, PhIF2, and XeF2) was unsuccessful, and in
all cases, either decomposition or rearrangement of enamine 3 into
3-oxymethyl-1,2-oxazine was observed.15

The crystal structure of iodo-nitronate 4c was studied by X-ray
diffraction analysis (Fig. 1).16 The relative positions of the iodine
Figure 1. The molecular structure of 4c. Non-hydrogen atoms are presented by
thermal ellipsoids at 50% probability. Selected bond lengths and angles (Å and �):
I(1)–C(5) 2.182(2), O(1)–N(1) 1.411(3), O(2)–N(1) 1.259(2), N(1)–C(1) 1.307(3),
C(1)N(1)O(1) 122.35(19), N(1)C(1)C(5) 115.6(2), C(1)C(5)I(1) 111.13(16),
C(4)O(1)N(1)C(1) 26.9(3), C(1)C(2)C(3)C(4)–41.6(3).
atom and C@N bond can be considered as syn-clinal with the tor-
sion angle I(1)C(5)C(1)N(1) equal to 77.5(2)�. Other parameters,
such as the C@N and N–O bond lengths and the distorted half-chair
conformation with a displaced C(4) atom were similar to those
characteristics for previously reported cyclic nitronates.1a,5a

Nitronates 4 undergo typical reactions of a halomethyl group,
as well as those of a nitronate fragment. Thus, we demonstrated
that the halogen can be displaced by different heteroatom- and
carbon-centered nucleophiles, thereby providing the opportunity
for a facile access to functionalized cyclic nitronates. Reactions
of iodo-nitronate 4c with the potassium salts of phthalimide, p-
tolylthiol, and dimethyl malonate proceeded cleanly in DMF lead-
ing to the products of nucleophilic substitution 5 in high yields
(Table 2).

For nitronates 4, dipolar cycloaddition1,2 and Lewis acid-medi-
ated nucleophilic addition to the C@N bond3 were also studied.
Nitronate 4c reacted with excess methyl acrylate under reflux con-
ditions affording bicyclic product 6 as a mixture of two diastereo-
isomers in a ratio of 7.3:1 (Scheme 3).

A significant difference in the reactivity of bromo and iodo
derivatives was observed in the reactions of nitronates with silyl
ketene acetal 7. Thus, the reaction of bromo-nitronate 4b with 7
in the presence of TBS-triflate gave the expected product 9a in high
yield (Scheme 4). On the other hand, under similar conditions,
iodo-nitronate 4c smoothly furnished, after chromatography, a
mixture of enamine 10 and oxime 11 (the product of rearrange-
ment of enamine 10).15 Both these reactions proceed through the
initial generation of iminium species 8, observed by low tempera-
ture NMR measurements, by mixing nitronates 4b and c with tert-
butyldimethylsilyl triflate (TBSOTf). While bromo-substituted cat-
ion 8b undergoes conventional nucleophilic addition, iodinated
species 8c can serve as a source of positive iodine on reaction with
the silyl ketene acetal.

In summary, a series of halogenated cyclic six-membered nitro-
nates has been prepared starting from 3-methyl-substituted nitro-
nate 2 by means of a silylation/halogenation sequence. These
compounds were found to undergo nucleophilic substitution of
the halogen leading to new functionalized oxazine-N-oxides. The
Table 2
Nucleophilic substitution reactions of 4c

O
N

O

Ph

I

O
N

O

Ph

Nu

DMF

4c 5

Nu   K

Nu� Conditions Product Yielda (%)

PhthalN� 0 �C?rt, 1 h 5a 82
p-MeC6H4S�b �40?0 �C, 1 h 5b 87
(MeO2C)2CH�b �40?0 �C, 30 min 5c 88

a Isolated yield.
b Generated from Nu–H using t-BuOK.
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nitronate fragment of the halo-nitronates took part in nucleophilic
addition and 1,3-dipolar cycloaddition reactions.
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